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Introduction

Calculations of NMR chemical shifts using ab initio
molecular orbital theory [1] have recently proven to be a
powerful tool in the assignment of otherwise unknown
structures [2]. However, the ab initio techniques used are
still not suitable for rapid, everyday screening of large
molecules on low-end hardware. Semiempirical MO-theory
is several orders of magnitude faster than even low-level ab
initio theory and can be used routinely for far larger
molecules, but explicit GIAO-MNDO calculations of 13C
chemical shifts proved to be of limited accuracy and to need
a reparametrization of the MNDO method [3]. In this work
we consider an alternative approach that we have already
used successfully to estimate esr hyperfine coupling constants
[4]. Rather than trying to produce a physical model for the
desired property, we use a simple back-propagation artificial
neural net as a model-free device to derive the property in
question from a series of related calculated properties. Thus,
such a net can be trained to reproduce experimental esr

coupling constants given a series of calculated spin densities
and charges [4]. In a way, such methods represent the ultimate
in "black box" technology as usually not even the programmer
knows how the program arrives at the answer. Nevertheless,
within the philosophical framework of semiempirical MO
theory, techniques that relate the results of the calculations to
commonly observed spectroscopic properties are of immense
value to experimental chemists. We note here that the accuracy
requirements for a theoretical method that allows complete
assignment of a complicated spectrum are of the order of tenths
of a ppm if very similar resonances are to be assigned uniquely,
and that this sort of absolute accuracy is well beyond what we
can expect from any existing calculational method, although
cancellation of errors makes the situation much better for
closely related carbon atoms. Our aim in this work is to produce
a method fast enough that it can be applied routinely at the
end of every semiempirical optimization and accurate enough
to give a reasonable representation of the spectrum of the real
compound. The theory should also be completely independent
of any experimental data about the compound in question.
This means that the entire calculational process, including
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multipole analysis in which the hydrogens are represented
as monopoles (which are identical to Coulson charges [15])
and the nonhydrogen atoms by a monopole, dipole and
quadrupole. We also make the simple approximation that
the multipoles derived for each atom are those resulting from
the array of nine charges associated with the one-atom block
of the density matrix for that atom. Using this assumption
with the Born-Oppenheimer approximation and
Buckingham’s definition of the quadrupole moment [16] we
obtain
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which can be reduced within the NAO-PC model via
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where Q
kl
 is the quadrupole moment of the Cartesian

coordinates k and l, Zα is the charge of atom α located at Rα
with the vector components C

k,α and C
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atomic orbital point charges. This simple approach enables
us to calculate the multipole moments very quickly using
highly vectorizable algorithms.

Results

The first test of any type of point charge or additive
representation of the electronic part of the molecular
wavefunction is the ability of the model to reproduce the
dipole moment calculated directly [17] from the same
wavefunction. We have used a set of 45 organic molecules
to test the quality of the NAO-PC model in this respect. The
results are shown in Figure 1. There is an excellent 1:1 linear
correlation with a calculated correlation coefficient of 0.995
and a standard deviation between the two types of calculated
dipole moment of 0.13 Debye. The slope of the best fit least
squares line is 1.08 ± 0.02

The NAO-PC model is, however also well suited for the
calculation of higher molecular moments. Although

determining the geometry, should be carried out using
semiempirical theory.

The choice of descriptors (input data) for a net designed
to estimate 13C chemical shifts is wide. The most obvious
choice are atomic charges of some sort, as used in Spiesecke-
Schneider type relationships [5], although it is clear that such
relationships apply only to planar π-systems and are not
universally applicable. Quite generally, we expect that
descriptors of the electron density around a given carbon atom
will be needed to describe the diamagnetic contribution to the
chemical shift [6] and that excitation energies or related
quantities will be needed to describe the paramagnetic
contribution. Rather than use excitation energies (which would
need a configuration interaction calculation) directly, we chose
to use the approach suggested by Karplus and Pople [7] in
which the paramagnetic contribution is related to atomic
charges and bond orders. Karplus and Pople assumed an
average excitation energy, but we have also defined the atom
to which the bond is made in order to allow the net to judge
the magnitude of the various paramagnetic contributions.

Calculational Method

All calculations used the VAMP 5.5 program [8] on a Convex
C-220/256, Hewlett-Packard 735 and Silicon Graphics Indigo
workstations. Standard AM1 [9] and PM3 [10] parameters were
used throughout. Geometries were optimized until the gradient
norm was less than 0.4 kcal mol-1 Å-1. Bond order calculations
used the formalism proposed by Perkins and Stewart, [11] as
also implemented in MOPAC and AMPAC.

Atom-Centered Multipoles

One of the most compact and useful ways of describing the
electronic environment around an atom is a distributed
multipole analysis [12] in which the multipoles are centered
on the atoms themselves. We recently introduced the Natural
Atomic Orbital/Point Charge (NAO-PC) model [13,14] for
representing the electron density of a molecule in terms of an
extended point charge model within semiempirical
MO-techniques. This model, in which the electron density is
represented by point charges situated at the centers of charge
of the individual lobes of the natural atomic orbitals, is in
effect a distributed multipole model and can be converted to
an atom-centered multipole description very easily.

The calculation of the positions and sizes of the point
charges has been described in detail elsewhere [13,14]. We
note here, however, that very small charges far from the
nucleus, which were neglected by our original cutoff procedure
[13], play an important role in determining the molecular
multipole moments exactly, and that the cutoff procedure was
therefore abandoned for this work. Because only the
nonhydrogen atoms are represented by an array of nine
charges, we have limited ourselves to an atom-centered
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experimental data are scarce, we tested the accuracy of AM1/
NAO-PC calculated molecular quadrupole moments using
some of the available data [18]. The results are compared with
experiment in Table 1 and plotted against the experimental
data in Figures 2a/2b. The agreement is surprisingly good and
AM1 appears, at least for this very limited test set, to perform
better than reasonable level ab initio calculations. This is
possibly a direct consequence of the fact that AM1 uses Slater-
type orbitals, which have far more pronounced tails than the
Gaussian functions used in most ab initio work. Similarly to
the small distant charges in the NAO-PC model, the distant
low electron density regions of the wavefunction play a
significant role in determining the magnitudes of the molecular
electrostatic moments. PM3 has been shown [14] to perform
similarly for molecular quadrupoles.

We therefore conclude that the NAO-PC method within
the AM1 and PM3 frameworks provides a reliable description
of the molecular electrostatics, as demonstrated for molecular
electrostatic potentials [13,14], electrostatic fields [19] and
molecular dipoles and quadrupoles. We therefore feel confident
in using the atom-centered multipoles thus obtained as
descriptors for an artificial neural net.

Figure 1: Comparison between directly calculated AM1
dipole moments and those given by the NAO-PC model.

Figure 2a: Comparison between experimental and AM1
(NAO-PC) calculated quadrupole moments. The Qzz-values,
which depend linearly on Qxx and Qyy, are not shown.

Figure 2b: Comparison between experimental and PM3
(NAO-PC) calculated quadrupole moments. The Q

zz
-values,

which depend linearly on Q
xx
 and Q

yy
, are not shown.
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The Back-Propagation Net and the Training Set

It is not appropriate to discuss the capabilities of back-
propagation neural nets in detail here, but in the present
context, the net can be considered to be a model-free device
that attempts to derive the dependence of the target values
(the chemical shifts) on the descriptors (input data). A simple
back-propagation net achieves this by a steepest descent-type
optimization procedure based on the generalized delta rule
[20]. The weights and biases associated with the individual
connections and nodes of the net are seeded to random values
and then optimized in order to minimize the total RMS error
between calculated and target values for all the chemical shift
values in the training set. The inclusion of a hidden layer of
nodes allows the net to learn functions such as the exclusive if
and thus to react far more flexibly than a fitting procedure
such as multivariate least squares.

As discussed in the introduction, a neural net for estimating
13C chemical shifts must be given information about the
electronic environment around the carbon atom in question
and, at least in our case, about the number and types of bonds

in which the carbon is involved. Furthermore, the descriptors
must be rotationally invariant. We have therefore used
individual standard multipole orientations derived from a
diagonalization of the quadrupole tensor for each atom. The
input for the net is thus rotationally invariant, but also
includes information about the relative orientation of the
dipole vector and quadrupole tensor components. The
descriptors required for atomic multipoles up to quadrupole
are thus the charge, the three dipole vector components in
the orientation of the diagonalized quadrupole and the three
nonzero values of the diagonalized quadrupole tensor.

In order to provide information that allows the net to
deduce the paramagnetic contribution to the magnetic
shielding, we followed the ideas proposed by Karplus and
Pople [7] and included descriptors for the four highest bond
orders to the carbon and about the four atoms to which these
bonds are made. The atoms cannot be designated by their
atomic numbers, as this would not describe the periodic
properties of the elements. The four atoms were therefore
each described using two descriptors, the numbers of the
group and row in the periodic table.

Experience with the above descriptor set showed larger
than average deviations for cyclopropanes and other strained
compounds, so that the smallest bond angle at the carbon

1,3-Difluorobenzene -4.34 -0.56 4.90 -5.0±0.9 -2.6±1.3 7.6±1.0

3-Methylfurane 2.16 -5.44 3.29 2.4±0.8 -5.5±1.1 3.1±0.7

Benzene 2.84 2.84 -5.68 2.8±1.4 2.8±1.4 -5.6±2.8

Fluorobenzene -2.31 7.24 -4.93 1.9±0.8 5.1±1.0 -3.2±1.0

1,2-Difluoroethylene -0.69 1.32 -0.63 -1.7±0.4 3.0±0.3 -1.3±0.5

CO2 -5.59 2.80 2.80 -4.4±0.2 2.2±0.2 2.2±0.2

Ammonia -1.82 0.91 0.91 -2.4±0.1 1.2±0.1 1.2±0.1

Cyanogen fluoride -4.31 2.15 2.15 -4.2±? 2.1±? 2.1±?

Difluoroformaldehyd -3.74 -0.13 3.87 -3.7±0.7 -0.2±0.5 3.9±1.1

Fluoroacetylene 2.64 -1.32 -1.32 4.0±0.2 -2.0±0.2 -2.0±0.2

Chloroacetylene 6.26 -3.13 -3.13 7.8±? -3.9±? -3.9±?

Dicyanogen -8.19 4.10 4.10 -9.0±? 4.5±? 4.5±?

Acetonitrile -2.19 1.09 1.09 -1.8±1.2 0.9±1.2 0.9±1.2

Water -0.01 1.25 -1.23 -0.1±0.1 2.6±0.1 -2.5±0.1

Formic acid 4.75 -5.95 1.20 5.2±0.4 -5.3±0.4 0.1±0.4

Dimethyl ether 3.35 -2.33 -1.03 3.3±0.6 -2.0±0.5 -1.3±1.0

Ethane -0.82 0.41 0.41 -0.8±0.1 0.4±0.1 0.4±0.1

1,3-Pentadiyne 11.64 -5.82 -5.82 9.8±0.8 -4.9±0.8 -4.9±0.8

Molecule NAO-PC Experimental [16]

Qxx Qyy Qzz Qxx Qyy Qzz

Table 1: AM1-Calculated and Experimental Quadrupole Mo-
ments (Debye·Ångstrøm)
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atom in question was also included as a descriptor. This gives
a total of 20 descriptors, as shown in Table 2.

A variety of architectures were tested for a simple back-
propagation neural net [20] before the final configuration of
a three-layer net (one hidden layer) with 20 input descriptors,
14 neurons in the hidden layer and one output neuron (the
chemical shift) was eventually selected. This net has a total
of 309 variables (weights + biases) so that we used a training
set of over 800 chemical shifts in order to ensure that the net
was not learning shifts by heart, but rather deriving a more
general set of rules. Factors larger than two between the
number of data and the number of variables appears adequate
for this purpose [21]. Using the same training set with a larger
(20:18:1) net gave better performance for the training set,
but not for the test set. Similarly a smaller (20:10:1) net
performed less well for both the training and test sets. The
training set consisted of 840 individual chemical shifts taken
from 231 different molecules. The choice of molecules is
critical. They must cover the entire range of compounds that
the trained net is intended to be able to handle and the
experimental chemical shifts should refer to a clearly defined
state. This means that conformationally flexible molecules,
or those for which tautomeric equilibria in solution are
possible, should not be included. Similarly, because the net
reacts non-linearly, chemically equivalent protons that are
not symmetrically equivalent cannot be used in the training
set. In this preliminary work, which is designed to test the
viability of our approach, many types of functional groups

have not been included. This neglect of certain types of
functional group allows us to test the generality of the rules
derived by the net by testing for „extrapolation“ compounds,
which contain functional groups that the net does not know.
We have also not included any ions in this initial training set
for the same reason (see below). All chemical shift data for
both the training set and the test set were taken from reference
[22]. The test set covers the range of chemical shifts from -
2.8 to 225 ppm. The nets were tested for overtraining
periodically during training (i.e. the test set was calculated in
order to make sure that its results were not depreciating as the
net improved its performance for the training set). For both
AM1 and PM3, the final stable net proved to perform best for
both the training and the test sets.

Figures 3a/3b show the results obtained for the training
set after about 400,000 training cycles. The net is stable at
this stage, but because of the large data:variables ratio, it is
unable to learn to recognise specific carbons and therefore
generates a reliable set of rules for deriving the chemical shift
from the descriptors. In this way we hope to avoid the common
mistake in neural net applications that the net performs
excellently for the training set, but has essentially no predictive
power. Ideally, the net should perform as well for the test set
as for the training set. The standard deviation between
calculated and experimental chemical shifts is 3.9 ppm, with
a maximum deviation of 17 ppm for AM1 and slightly worse
(4.7 ppm standard deviation, -20 ppm maximum deviation)
for PM3.

Node # Descriptor

1 Atomic monopole (charge)

2-4 Atomic dipole components

5-7 Atomic quadrupole components

8 Highest bond order, B1

9 Second highest bond order, B2

10 Third highest bond order, B3

11 Fourth highest bond order, B4

12 Element to which bond B1 is made (group of the periodic table)

13 Element to which bond B2 is made (group of the periodic table)

14 Element to which bond B3 is made (group of the periodic table)

15 Element to which bond B4 is made (group of the periodic table)

16 Element to which bond B1 is made (row of the periodic table)

17 Element to which bond B2 is made (row of the periodic table)

18 Element to which bond B3 is made (row of the periodic table)

19 Element to which bond B4 is made (row of the periodic table)

20 Smallest bond angle at the carbon in question

Table 2: Input descriptors
for the back-propagation
neural net.
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Figure 4b:  Comparison between experimental 13C chemical
shifts and those given by the 20:14:1 back-propagation net
for the test set PM3 shown in Scheme 1.

Figure 4a:  Comparison between experimental 13C chemical
shifts and those given by the 20:14:1 back-propagation net
for the test set AM1 shown in Scheme 1.

Figure 3b: Comparison between experimental 13C chemical
shifts and those given by the 20:14:1 back-propagation net
for the training set PM3.

Figure 3a: Comparison between experimental 13C chemical
shifts and those given by the 20:14:1 back-propagation net
for the training set AM1.
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The Test Set

The molecules used for the test set are shown in Scheme 1.
We deliberately chose large molecules because they are
usually treated well by semiempirical procedures and would
require a major computational effort using ab initio methods.
The functional groups contained in the test set are also
represented in the training set, which, however, contains
molecules whose AM1 or PM3 geometries may be
significantly in error in order to test the entire geometry
optimization/chemical shift estimation procedure for real
examples.

The results obtained for the test sets are shown in Figures
4a/4b.  The largest deviation for AM1 (19.6 ppm) is almost
identical to that obtained for the training set and the standard
deviation (6.9 ppm) is less than twice that given for the
training set - both values that indicate that the net really has
learnt to estimate chemical shifts on the basis of the
descriptors. The PM3 net also gives results comparable to
those obtained for the training set (31.8 ppm maximum
deviation, 8.7 ppm standard deviation), but is generally not
as accurate as the AM1 net. We therefore conclude that the

neural net technology presented here provides a fast and
economical method for estimating 13C chemical shifts with
the sort of accuracy given for the test set. Although GIAO/
MNDO results have only been reported for a very limited set
of hydrocarbons [3] we estimate that the neural net procedure
achieves comparable accuracy to the direct calculation of the
shieldings.

Discussion

This work has established the viability and the limitations in
accuracy of the type of approach outlined here. The accuracy
obtained is not sufficient to, for instance, assign the individual
olefinic carbons in trans-retinal, but is closer to that which
can be expected from good additive schemes. Schemes 2a
and 2b show all the carbon atoms in the test set for which the
difference between calculated and experimental chemical shift
is larger than ±10 ppm for AM1 and PM3, respectively. For
cocaine 3 and sparteine 5, all carbon shifts are predicted within
10 ppm. For trans-retinal 1, and the prostaglandin 9, one carbon
shift (for a ring carbon in 1 and the tertiary carbon á to the
carbonyl in 9 shows an error of 14-17 ppm. The performance
for the bridgehead C-atoms for the two steroids testosterone 2
and progesterone 4 is less impressive. This may reflect a lack
of highly substituted ring systems in the training set or the

Scheme 1: The test set of molecules; 1, trans-retinal; 2,
testosterone; 3, cocaine; 4, progesterone; 5, sparteine; 6,
biotine; 7, brucine; 8, mitomycine and 9, prostaglandine.

CHO

1 2

O

OH

3

N

O

CO

O
O

4
O

O

CH3 N
N

5 6

S

COOH

N

N
O

H

H

N

N

O

O

7

NH

OCH3

CH3

NH2

O

O

N

O

NH2

8

O

OH

COOH

OH

9



J. Mol. Model. 1995, 1 29

known tendency of AM1 [23] to make rings too flat. The latter
suggests that systematic AM1 geometry errors may influence
the results adversely. Brucine 7 shows some large errors for
three of the peripheral carbons (one olefinic and two allylic),
but is otherwise treated well. Mytomycine 8 is treated far less
well than the other test molecules. This is probably a result of
the unusual amino-substituted quinone system that was not
present in the training set. Generally, the results indicate both
an adequate overall performance and some systematic

weaknesses that can probably eliminated by retraining with
a suitably extended training set.

For PM3, only the chemical shifts in sparteine are all
within the 10 ppm limit. Generally, fully substituted olefinic
carbons show large errors, as do quaternary carbons and those
α to sulfur. The performance of PM3 for the test set is inferior
to that of AM1, although it apears to be able to treat the
quinone system of 8 better than AM1.

Despite these errors, we feel that this sort of procedure
represents a significant step forward in semiempirical

Scheme 2a: AM1 test set with the location of the Carbon atoms
with a calculated error >  ±10 ppm.
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techniques. The chemical shift calculation is so fast that there
is no need to make it an option within the VAMP program.
Every AM1 or PM3 calculation on neutral, closed-shell
carbon-containing molecules in the development (6.0) version
[24] gives the estimated 13C chemical shifts as an extension
of the population analysis. The most important feature of
this procedure is that it establishes a direct link between the
calculations and spectroscopic data that are almost always
available. The question as to how the net actually derives its
result is, however of interest and was investigated by

systematic variation of the descriptors in order to determine
the net’s reaction.

Dependence of the Estimated Shifts on the Descriptors

The dependence of the predicted chemical shifts was
investigated by systematically changing the input descriptors
for a benzene carbon and observing the behavior of the net.
Figure 5a shows the dependence of the chemical shift estimated

Scheme 2b: PM3 test set with the location of the Carbon
atoms with a calculated error >  ±10 ppm.
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by the AM1 and PM3 nets on the atomic multipole. The
effect is generally small (2-3 ppm for a change of 0.3 in the
monopole) and the two nets give different trends. AM1 shows
a minimum in the estimated chemical shift around +0.07
and PM3 a minimum. These results suggest that the monopole
is not playing a major role in determining the chemical shift
for this type of carbon.

The effect of the three dipole components on the estimated
shifts for the two nets is shown in Figures 5b/5c. Component 1
(in-plane, roughly C-H direction) causes an increase in the
estimated chemical shift as its value is increased in both
cases, but this effect is far stronger for the PM3 net than for
AM1. The second component (in-plane, perpendicular to the
first) shows the same effect. The out-of plane component 3
has a negative slope in both cases, but falls of far more sharply
for AM1 than for PM3.  Changes in these parameters have,
however, little physical meaning for a benzene carbon.

The effect of the three quadrupole components is shown
in figures 5d/5e. The two plots are completely different. All
three components give a monotonic increase in the calculated
chemical shift as they are increased, but for AM1
component 3 (out-of plane) shows the opposite trend. This
suggests that the effect of increasing π-electron density is
opposite in the two nets. This unexpected result probably
reflects linear dependencies between descriptors that make
interpretation difficult.

Figure 5b: Dependence of the AM1 predicted chemical shift
of a benzene carbon on the dipole components.  Dipoles are
given in Debyes. The “Change in parameter” axis indicates
that the numerical value of the parameters dipole  were chan-
ged by the given amount.

Figure 5c: Dependence of the PM3 predicted chemical shift
of a benzene carbon on the dipole components.  Dipoles are
given in Debyes. The “Change in parameter” axis indicates
that the numerical value of the parameters dipole  were chan-
ged by the given amount.

Figure 5a: Dependence of the AM1/PM3 predicted chemical
shift of a benzene carbon on the atomic charge. Charges are
given in electronic charges.  The “Change in parameter” axis
indicates that the numerical value of the parameter   was  chan-
ged by the given amount.
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The effect of changing the aromatic bond order descriptor
is shown in Figure 5f. Increasing bond order leads to a
higher chemical shift for both nets, but the effect is much
larger for AM1. The AM1 curve also shows a maximum at
about +0.15.

The above results shed little light on the internal
dependencies of the two nets. What, however, is clear is that
the two apparently similar nets are reaching their estimates
by significantly different paths. This may mean that the two
nets have trained to two nonequivalent local minima, but
retraining the PM3 net starting from the AM1 weights
suggests that this is not the case.

Predictive power of the Net

The test set shown in Scheme 1 only probes the ability of
the net to interpolate within the known range of data because
it does not contain any groups that are not also in the training
set. A far more general test of the predictive power of the net
(and whether it really has established general rules for
estimating the chemical shift) is to use a second test set
containing chemical entities that are not represented in the
training set. Schemes 3, 4 and 5 show such molecules with
the calculated and experimental chemical shifts. We have
included charged species, sulfones, pyridine-N-oxide etc. No
such species appear in the test set.

Figure 5d: Dependence of the AM1 predicted chemical shift
of a benzene carbon on the quadrupole components.
Quadrupoles are given in Debye.Ångstrøm. The “Change in
parameter” axis indicates that the numerical value of the
parameters were  changed by the given amount.

Figure 5e: Dependence of the PM3 predicted chemical shift
of a benzene carbon on the quadrupole components.
Quadrupoles are given in Debye.Ångstrøm. The “Change in
parameter” axis indicates that the numerical value of the
parameters were  changed by the given amount.

Figure 5f: Dependence of the AM1/PM3 predicted chemical
shift of a benzene carbon on the C-C-bond order.  Bond orders
correspond roughly to the customary single, double, triple
bond convention. The “Change in parameter” axis indicates
that the numerical value of the bond order was changed by
the given amount.
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Scheme 4: Calculated and experimental
(in parentheses) chemical shifts for sulfones.

exist in the gas phase [25], should give results that obey this
simple description even roughly.

The sulfones and the sulfonamide (Scheme 4) also give
interesting results. The estimated chemical shifts for the
sulfonamide are acceptable with PM3, but the carbon α- to
the sulfone group deviates by 24 ppm using AM1. There are
large deviations for the α-carbons in the sulfonyl chloride
(50-60 ppm), but AM1 does well for the remaining carbons.
The agreement for the meta-carbon is also poor with PM3.

Finally, pyridine-N-oxide and the methyl-pyridinium ion
(Scheme 5) were used to test the net’s ability to deal with
unusual inductive effects in aromatic systems. The N-oxide
shows large (66 and 33 ppm for  AM1 and PM3, respectively)
deviation for the ortho-carbons. These, however, have
descriptors outside the range of those used to train the net.
This situation can be detected by testing that all descriptors
are within the normalization range. For out-of-range carbon
atoms, a diagnostic message is printed. AM1 treats the other
two carbons well, whereas PM3 has a 19 ppm error for the
para-position.

 The pyridinium salt shows moderate agreement with
experiment except for the meta-carbon for both methods.
AM1 gives a 30 ppm error for the ortho and para positions,
but PM3 does much better. Clearly, the uniform charge
correction suggested for the annulene ions above would not
work in this case, but a net with one extra descriptor should
be able to deal with this example.

Summary and Conclusions

The technique presented here combines semiempirical MO-
theory with an artificial neural net to provide estimates of
13C chemical shifts that are accurate enough to be of general
use to the non-specialist, but not for detailed assignment of
spectra, which would need almost two orders of magnitude
lower errors. Many of the failures can be traced to systematic

The results for the annulene ions (cyclopropenium,
tropylium, cyclopentadienyl anion and cyclooctatetraene
dianion, Scheme 3) show very systematic errors. For AM1,
simply adding 25 ppm per charge to these results would give
moderate agreement between the net and experiment, so that
the addition of one extra descriptor (the total molecular charge)
would give a generally applicable net. This simple correction
would also work moderately well for PM3 with the notable
exception of the cyclopropenium ion. It is remarkable that a
species such as the cyclooctatetraene dianion, which cannot

Scheme 3: Calculated and experimental (in parentheses)
chemical shifts for anulene ions.
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Scheme 5: Calculated and experimental
(in parentheses) chemical shifts for
pyridine derivatives.

AM1 and PM3 errors, suggesting that the basic neural net
methodology itself is sound. This conclusion is also
reinforced by the net’s estimates for the "extrapolation"
compounds shown in Schemes 3, 4 and 5. In these cases the
net must be using some sort of generally applicable rule that
also works moderately well for new compound classes.
Nevertheless, it is clearly possible that the net will give errors
of up to 30 - 35 ppm even for descriptors within the range of
its training set. Generally, however, the standard deviation
of the estimated chemical shifts from the experimental values
is 6-10 ppm. Paradoxically, we would have distrusted our
results if they had been significantly better than this because
direct calculation of the magnetic shielding within AM1 or
PM3 cannot be expected to be very much more accurate
than the net.

The present net is limited to neutral molecules and has
not been trained for all substituents. We believe, however,
that we have established that the general calculational
technique is useful and that a net that includes a molecular
charge descriptor with a more universal training set should
be able to deal with the exceptions shown above with about
the same accuracy that the current net attains for the test set
of molecules. The major advantage of 13C chemical shifts is
that experimental data are plentiful, so that we can now
embark on the training of a more universal net, which will
eventually be included in the VAMP program.
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